Practical guide to the diagnostics of ruminant gastrointestinal nematodes, liver fluke and lungworm infection: interpretation and usability of results | Parasites & Vectors

0
  • Kaplan RM, Gianechini LS. Research updates in small ruminant parasitology. In: Smith RA, editor. Proceedings of the 2020 AABP conference, 24–26 Sept 2020; Louisville. p. 252-54.

  • Kaplan RM. The changing landscape of parasite control in small ruminants: what practitioners need to know. In: Smith RA, editor Proceedings of the 2020 AABP Conference, 24–26 Sept 2020; Louisville. p. 242-51

  • Morgan ER, Charlier J, Guy H, Biggeri A, Catalan D, von Samson-Himmelstjerna G, et al. Global change and helminth infections in grazing ruminants in Europe: impacts, trends and sustainable solutions. Agriculture. 2013;3:484–502.

    Article 

    Google Scholar
     

  • Gordon HMcL, Whitlock HV. A new technique for counting nematode eggs in sheep feces. J Counc Sci Ind Res. 1939;12:50–2.


    Google Scholar
     

  • Vercruysse J, Claerebout E. Treatment vs non-treatment of helminth infections in cattle: defining the threshold. Vet Parasitol. 2001;98:195–214.

    Article 
    CAS 

    Google Scholar
     

  • Whitlock HV. Some modifications of the McMaster helminth egg-counting technique and apparatus. J Counc Sci Ind Res. 1948;21:177–80.


    Google Scholar
     

  • Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, et al. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc. 2017;12:1723–32.

    Article 
    CAS 

    Google Scholar
     

  • Rashid M, Stevenson M, Waenga S, Mirams G, Campbell A, Vaughan J, et al. Comparison of McMaster and FECPAKG2 methods for counting nematode eggs in the faeces of alpacas. Parasit Vectors. 2018;11:278.

    Article 

    Google Scholar
     

  • Höglund J, Carlsson A, Gustafsson K. Effects of lambing season on nematode fecal egg output in ewes. Vet Parasitol Reg Stud Rep. 2021;26:100633.


    Google Scholar
     

  • Morgan ER, Cavill L, Curry GE, Wood RM, Mitchell ES. Effects of aggregation and sample size on composite fecal egg counts in sheep. Vet Parasitol. 2005;131:79–87.

    Article 
    CAS 

    Google Scholar
     

  • Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 1992;44:35–44.

    Article 
    CAS 

    Google Scholar
     

  • Nielsen MK. What makes a good fecal egg count technique? Vet Parasitol. 2021;296:109509.

    Article 

    Google Scholar
     

  • Le Jambre LF, Dominik S, Eady SJ, Henshall JM, Colditz IG. Adjusting worm egg counts for fecal moisture in sheep. Vet Parasitol. 2007;145:108–15.

    Article 

    Google Scholar
     

  • Thamsborg SM, Jergensen RJ, Nansen P. Internal parasitism of steers grazing extensively at different stocking rates. Acta Vet Scand. 1998;39:311–23.

    Article 
    CAS 

    Google Scholar
     

  • Zapa DMB, Couto LFM, Heller LM, Cavalcante ASA, Nicaretta JE, Cruvinel LB, et al. Association between fecal egg count and weight gain in young beef cattle. Livest Sci. 2021;244:104335.

  • Ueno H, Goncalves PC. Manual para Diagnóstico das Helmintoses de Ruminantes. 4th edn. Tokyo: Japan International Cooperation Agency; 1998.

  • Verschave SH, Vercruysse J, Claerebout E, Rose H, Morgan ER, Charlier J. The parasitic phase of Ostertagia ostertagi: quantification of the main life history traits through systematic review and meta-analysis. Int J Parasitol. 2014;44:1091–104.

    Article 
    CAS 

    Google Scholar
     

  • Verschave SH, Rose H, Morgan ER, Claerebout E, Vercruysse J, Charlier J. Modelling Cooperia oncophora: quantification of key parameters in the parasitic phase. Vet Parasitol. 2016;223:111–4.

    Article 

    Google Scholar
     

  • Forbes AB. Fecal egg counts in cattle: how do they stack up? Livestock. 2017;22:124–7.

    Article 

    Google Scholar
     

  • Mattioli RC, Cassama M, Kora S. A comparative study of gastrointestinal nematode egg output in N’Dama, Zebu and N’Dama x Zebu crossbred cattle. Parassitologia. 1992;34:109–13.

    CAS 

    Google Scholar
     

  • Frisch JE, O’Neill CJ. Comparative evaluation of beef cattle breeds of African, European and Indian origins. 2. Resistance to cattle ticks and gastrointestinal nematodes. Anim Sci. 1998;67:39–48.

    Article 

    Google Scholar
     

  • Forbes AB. Parasite myth busting. Cattle Pract. 2012;20:128–36.


    Google Scholar
     

  • Combatting Anthelmintic Resistance in Ruminants (COMBAR). 2021. https://www.combar-ca.eu/sites/default/files/FECRT_PROTOCOL_cattle_March_2021%20.pdf. Accessed on 26 Jul 2022.

  • Shaw DJ, Vercruysse J, Claerebout E, Dorny P. Gastrointestinal nematode infections of first-grazing season calves in Western Europe: associations between parasitological, physiological and physical factors. Vet Parasitol. 1998;75:133–51.

    Article 
    CAS 

    Google Scholar
     

  • Cabaret J, Gasnier N, Jacquiet P. Faecal egg counts are representative of digestive-tract strongyle worm burdens in sheep and goats. Parasite. 1998;5:137–42.

    Article 
    CAS 

    Google Scholar
     

  • Wormboss. Sheep. 2022. http://www.wormboss.com.au/sheep-goats/tests-tools/drench-decision-guide/sheep.php. Accessed 26 Jul 2022.

  • Sustainable Control of Parasites (SCOPS). 2020. https://www.scops.org.uk/workspace/pdfs/fecal-egg-counts.pdf. Accessed 26 Jul 2022.

  • Combatting Anthelmintic Resistance in Ruminants (COMBAR). Faecal egg count reduction test (FECRT) protocol
    gastrointestinal nematodes—SHEEP and GOATS. 2021. https://www.combar-ca.eu/sites/default/files/FECRT_PROTOCOL_sheep_goats_March%202021.pdf. Accessed 26 Jul 2022.

  • Wood IB, Amaral NK, Bairden K, Duncan JL, Kassai T, Malone JB, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, bovine, caprine). Vet Parasitol. 1995;58:181–213.

    Article 
    CAS 

    Google Scholar
     

  • Ministry of Agriculture, Fisheries and Food (MAFF). Manual of veterinary parasitological techniques. 3rd edn. London: Her Majesty’s Stationary Office; 1986.

  • Egwang TG, Slocombe JO. Evaluation of the Cornell-Wisconsin centrifugal flotation technique for recovering trichostrongylid eggs from bovine feces. Can J Comp Med. 1982;46:133–7.

    CAS 

    Google Scholar
     

  • Paras KL, George MM, Vidyashankar AN, Kaplan RM. Comparison of fecal egg counting methods in four livestock species. Vet Parasitol. 2018;257:21–7.

    Article 

    Google Scholar
     

  • Cringoli G, Rinaldi L, Maurelli MP, Utzinger J. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat Protoc. 2010;5:503–15.

    Article 
    CAS 

    Google Scholar
     

  • Neves JH, Carvalho N, Rinaldi L, Cringoli G, Amarante AFT. Diagnosis of anthelmintic resistance in cattle in Brazil: a comparison of different methodologies. Vet Parasitol. 2014;206:216–26.

    Article 
    CAS 

    Google Scholar
     

  • Presland SL, Morgan ER, Coles GC. Counting nematode eggs in equine fecal samples. Vet Rec. 2005;156:208–10.

    Article 
    CAS 

    Google Scholar
     

  • Sowerby SJ, Crump JA, Johnstone MC, Krause KL, Hill PC. Smartphone microscopy of parasite eggs accumulated into a single field of view. Am J Trop Med Hyg. 2016;94:227–30.

    Article 
    CAS 

    Google Scholar
     

  • Van den Putte N, Claerebout E, Levecke B. Evaluation of the mini-FLOTAC technique for the detection of gastro-intestinal parasites in large companion animals. Vlaams Diergen Tijds. 2016;85:15–22.


    Google Scholar
     

  • Amarante AFT, Bricarello PA, Rocha RA, Gennari SM. Resistance of Santa Ines, Suffolk and Ile de France lambs to naturally acquired gastrointestinal nematode infections. Vet Parasitol. 2004;120:91–106.

    Article 
    CAS 

    Google Scholar
     

  • Van Wyk JA, Mayhew E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: a practical lab guide. Onderstepoort J Vet Res. 2013;80:1–14.


    Google Scholar
     

  • McKenna PB. The effect of previous cold storage on the subsequent recovery of infective third stage nematode larvae from sheep faeces. Vet Parasitol. 1998;80:67–172.

    Article 

    Google Scholar
     

  • Amarante AFT, Amarante MRV. Advances in the diagnosis of the gastrointestinal nematode infections in ruminants. Braz J Vet Res Anim Sc. 2016;53:127–37.

    Article 

    Google Scholar
     

  • Umair S, McMurtry LW, Knight JS, Simpson HV. Use of fluorescent lectin binding to distinguish eggs of gastrointestinal nematode parasites of sheep. Vet Parasitol. 2016;217:76–80.

    Article 
    CAS 

    Google Scholar
     

  • Kaplan RM, Burke JM, Terrill TH, Miller JE, Getz WR, Mobini S, et al. Validation of the FAMACHA© eye color chart for detecting clinical anemia in sheep and goats on farms in the southern United States. Vet Parasitol. 2004;123:105–20.

    Article 
    CAS 

    Google Scholar
     

  • Glajy Y, Mani A, Bukar M, Igbokwe I. Reliability of FAMACHA© chart for the evaluation of anaemia in goats in and around Maiduguri. Sokoto J Vet Sci. 2015;12:9.

    Article 

    Google Scholar
     

  • Bandhaiya D. Haematological parameters and its relationship with fecal egg count and FAMACHA© score in Haemonchus contortus naturally infected goats. J Anim Res. 2020;10:659–65.

    Article 

    Google Scholar
     

  • van Wyk JA, Bath GF. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Vet Res. 2002;33:509–29.

    Article 

    Google Scholar
     

  • Martin PJ, Le Jambre LF, Claxton JH. The impact of refugia on the development of thiabendazole resistance in Haemonchus contortus. Int J Parasitol. 1981;11:35–41.

    Article 
    CAS 

    Google Scholar
     

  • Combatting Anthelmintic Resistance in Ruminants (COMBAR). Targeted selective treatment (TST).
    A visual guide of internal parasites in small ruminants. 2020. https://www.combar-ca.eu/sites/default/files/CA16230-COMBAR-TST-Visual-Guide-online-high_res.pdf. Accessed on 26 Jul 2022.

  • Bath GF, van Wyk JA. The Five Point Check® for targeted selective treatment of internal parasites in small ruminants. Small Rumin Res. 2009;86:6–13.

    Article 

    Google Scholar
     

  • Greer AW, Kenyon F, Bartley DJ, Jackson EB, Gordon Y, Donnan AA, et al. Development and field evaluation of a decision support model for anthelmintic treatments as part of a targeted selective treatment (TST) regime in lambs. Vet Parasitol. 2009;164:12–20.

    Article 
    CAS 

    Google Scholar
     

  • Molento MB, Gaviao AA, Depner RA, Pires CC. Frequency of treatment and production performance using the FAMACHA method compared with preventive control in ewes. Vet Parasitol. 2009;162:314–9.

    Article 
    CAS 

    Google Scholar
     

  • Leask R, van Wyk JA, Thompson PN, Bath GF. The effect of application of the FAMACHA© system on selected production parameters in sheep. Small Rumin Res. 2013;110:1–8.

    Article 

    Google Scholar
     

  • Papadopoulos E, Gallidis E, Ptochos S, Fthenakis GC. Evaluation of the FAMACHA© system for targeted selective anthelmintic treatments for potential use in small ruminants in Greece. Small Rumin Res. 2013;110:124–7.

    Article 

    Google Scholar
     

  • Torres-Chable OM, García-Herrera RA, González-Garduño R, Ojeda-Robertos NF, Peralta-Torres JA, Chay-Canul AJ. Relationships among body condition score, FAMACHA© score and haematological parameters in Pelibuey ewes. Trop Anim Health Prod. 2020;52:3403–8.

    Article 

    Google Scholar
     

  • Galyon HR, Zajac AM, Wright DL, Greiner SP, Bradford HL. Evaluating the relationship between fecal egg count, FAMACHA score, and weight in dewormed and non-dewormed Katahdin rams during a parasite challenge. Transl Anim Sci. 2020;4:178.

    Article 

    Google Scholar
     

  • Rizzon Cintra MC, Ollhoff RD, Sotomaior CS. Sensitivity and specificity of the FAMACHA© system in growing lambs. Vet Parasitol. 2018;251:106–11.

    Article 

    Google Scholar
     

  • Rizzon Cintra MC, Ollhoff RD, Weber SH, Sotomaior CS. Is the FAMACHA© system always the best criterion for targeted selective treatment for the control of haemonchosis in growing lambs? Vet Parasitol. 2019;266:67–72.

    Article 

    Google Scholar
     

  • van Wyk JA, Hoste H, Kaplan RM, Besier RB. Targeted selective treatment for worm management—how do we sell rational programs to farmers? Vet Parasitol. 2006;139:336–46.

    Article 

    Google Scholar
     

  • Meradi S, Bentounsi B. Lamb’s Eimeria infections raised in a steppic region and their impacts on clinical indicators (FAMACHA© and Disco). J Parasit Dis. 2021;45:599–605.

    Article 

    Google Scholar
     

  • Sekiya M, Zintl A, Doherty ML. Bulk milk ELISA and the diagnosis of parasite infections in dairy herds: a review. Ir Vet J. 2013;66:14.

    Article 

    Google Scholar
     

  • Forbes AB, Charlier J. Bulk milk ELISAs for quantitative estimates of parasite infection. Cattle Prac. 2006;14:167–73.


    Google Scholar
     

  • Charlier J, Duchateau L, Claerebout E, Vercruysse J. Predicting milk-production responses after an autumn treatment of pastured dairy herds with eprinomectin. Vet Parasitol. 2007;143:322–8.

    Article 
    CAS 

    Google Scholar
     

  • Forbes AB, Vercruysse J, Charlier J. A survey of the exposure to Ostertagia ostertagi in dairy cow herds in Europe through the measurement of antibodies in milk samples from the bulk tank. Vet Parasitol. 2008;157:100–7.

    Article 
    CAS 

    Google Scholar
     

  • Charlier J, Höglund J, von Samson-Himmeltjerna G, Dorny P, Vercruysse J. Gastrointestinal nematode infections in adult dairy cattle: impact on production, diagnosis and control. Vet Parasitol. 2009;164:70–9.

    Article 

    Google Scholar
     

  • Charlier J, Vercruysse J, Smith J, Vanderstichel R, Stryhn H, Claerebout E, et al. Evaluation of anti-Ostertagia antibodies in individual milk samples as decision parameter for selective anthelmintic treatment in dairy cows. Prev Vet Med. 2010;93:147–52.

    Article 

    Google Scholar
     

  • Charlier J, Demeler J, Höglund J, von Samson-Himmelstjerna G, Dorny P, Vercruysse J. Ostertagia ostertagi in first-season grazing cattle in Belgium, Germany and Sweden: General levels of infection and related management practices. Vet Parasitol. 2010;171:91–8.

    Article 

    Google Scholar
     

  • Dorny P, Shaw DJ, Vercruysse J. The determination at housing of exposure to gastrointestinal nematode infections in first-grazing season calves. Vet Parasitol. 1999;80:325–40.

    Article 
    CAS 

    Google Scholar
     

  • Ploeger HW, Borgsteede FHM, Eysker M, van den Brink R. Effect of nematode infections on growth performance of calves after stabling on commercial dairy farms. Vet Parasitol. 1990;36:71–81.

    Article 
    CAS 

    Google Scholar
     

  • Ploeger HW, Kloosterman A, Rietveld FW, Berghen P, Hilderson H, Hollanders W. Quantitative estimation of the level of exposure to gastrointestinal nematode infection in first-year calves. Vet Parasitol. 1994;55:287–315.

    Article 
    CAS 

    Google Scholar
     

  • Ploeger HW, Kloosterman A, Rietveld FW, Berghen P. Weight gain and the course of some estimators of gastrointestinal nematode infection in calves during winter housing in relation to the level of exposure during the previous grazing season. Vet Parasitol. 1995;56:91–106.

    Article 
    CAS 

    Google Scholar
     

  • Höglund J, Morrison DA, Charlier J, Dimander S, Larrson A. Targeted selective treatments for gastrointestinal nematodes in first-season grazing cattle based on mid-season daily weight gains. Vet Parasitol. 2009;164:80–8.

    Article 

    Google Scholar
     

  • Berghen P, Hilderson H, Vercruysse J, Dorny P. Evaluation of pepsinogen, gastrin and antibody response in diagnosing ostertagiasis. Vet Parasitol. 1993;46:175–95.

    Article 
    CAS 

    Google Scholar
     

  • Eysker M, Ploeger HW. Value of present diagnostic methods for gastrointestinal nematode infections in ruminants. Parasitology. 2000;120:S109–19.

    Article 

    Google Scholar
     

  • Charlier J, Dorny P, Levecke B, McKay-Demeler J, von Samson-Himmelstjerna G, Höglund J, et al. Serum pepsinogen levels to monitor gastrointestinal nematode infections in cattle revisited. Res Vet Sci. 2011;90:451–6.

    Article 
    CAS 

    Google Scholar
     

  • Rapsch C, Schweizer G, Grimm F, Kohler L, Bauer C, Deplazes P, et al. Estimating the true prevalence of Fasciola hepatica in cattle slaughtered in Switzerland in the absence of an absolute diagnostic test. Int J Parasitol. 2006;36:1153–8.

    Article 
    CAS 

    Google Scholar
     

  • Mazeri S, Sargison N, Kelly RF, de Bronsvoort CBM, Handel I. Evaluation of the performance of five diagnostic tests for Fasciola hepatica Infection in naturally infected cattle using a Bayesian no gold standard approach. PLoS ONE. 2016;11:e0161621.

    Article 

    Google Scholar
     

  • Taylor MA, Coop RL, Wall RL. Fasciola hepatica. Veterinary parasitology. 3rd ed. Oxford: Blackwell Publishing; 2007.


    Google Scholar
     

  • Alvarez Rojas CA, Jex AR, Gasser RB, Scheerlinck JP. Techniques for the diagnosis of Fasciola infections in animals: room for improvement. Adv Parasitol. 2014;85:65–107.

    Article 

    Google Scholar
     

  • Flanagan A, Edgar HWJ, Gordon A, Hanna REB, Brennan GP, Fairweather I. Comparison of two assays, a fecal egg count reduction test (FECRT) and a coproantigen reduction test (CRT), for the diagnosis of resistance to triclabendazole in Fasciola hepatica in sheep. Vet Parasitol. 2011;176:170–6.

    Article 
    CAS 

    Google Scholar
     

  • Anderson N, Luong TT, Vo NG, Bui KL, Smooker PM, Spithill TW. The sensitivity and specificity of two methods for detecting Fasciola infections in cattle. Vet Parasitol. 1999;83:15–24.

    Article 
    CAS 

    Google Scholar
     

  • Braun U, Wolfensberger R, Hertzberg H. Diagnosis of liver flukes in cows—a comparison of the findings in the liver, in the feces, and in the bile. Schweiz Arch Tierheilkd. 1995;137:438–44.

    CAS 

    Google Scholar
     

  • Brockwell Y, Spithill T, Anderson G, Grillo V, Sangster N. Comparative kinetics of serological and coproantigen ELISA and fecal egg count in cattle experimentally infected with Fasciola hepatica and following treatment with triclabendazole. Vet Parasitol. 2013;196:417–26.

    Article 
    CAS 

    Google Scholar
     

  • Reigate C, Williams HW, Denwood MJ, Morphew RM, Thomas ER, Brophy PM. Evaluation of two Fasciola hepatica fecal egg counting protocols in sheep and cattle. Vet Parasitol. 2021;294:109435.

    Article 

    Google Scholar
     

  • Zajac AM, Conboy GA. Veterinary clinical parasitology. 8th ed. Chichester: Wiley-Blackwell; 2012.


    Google Scholar
     

  • Mazeri S, Rydevik G, Handel I, Bronsvoort BMD, Sargison N. Estimation of the impact of Fasciola hepatica infection on time taken for UK beef cattle to reach slaughter weight. Sci Rep. 2017;7:7319.

    Article 

    Google Scholar
     

  • Charlier J, Meulemeester L, Claerebout E, Williams D, Vercruysse J. Qualitative and quantitative evaluation of coprological and serological techniques for the diagnosis of fasciolosis in cattle. Vet Parasitol. 2008;153:44–51.

    Article 

    Google Scholar
     

  • Gottstein B, Schneeberger M, Boubaker G, Merkle B, Huber C, Spiliotis M, et al. Comparative assessment of ELISAs using recombinant Saposin-like protein 2 and recombinant Cathepsin L-1 from Fasciola hepatica for the serodiagnosis of human fasciolosis. PLOS Negl Trop Dis. 2014;8:e2860.

    Article 

    Google Scholar
     

  • Takeuchi-Storm N, Denwood M, Hansen TVA, Halasa T, Rattenborg E, Boes J. Farm-level risk factors for Fasciola hepatica infection in Danish dairy cattle as evaluated by two diagnostic methods. Parasit Vectors. 2017;10:555.

    Article 

    Google Scholar
     

  • Mezo M, González-Warleta M, Carro C, Ubeira FM. An ultrasensitive capture ELISA for detection of Fasciola hepatica coproantigens in sheep and cattle using a new monoclonal antibody (MM3). J Parasitol. 2004;90:845–52.

    Article 

    Google Scholar
     

  • Kajugu PE, Hanna REB, Edgar HW, Forster FI, Malone FE, Brennan GP, et al. Specificity of a coproantigen ELISA test for fasciolosis: Lack of cross-reactivity with Paramphistomum cervi and Taenia hydatigena. Vet Rec. 2012;171:502–502.

    Article 

    Google Scholar
     

  • Kajugu PE, Hanna REB, Edgar HW, McMahon C, Cooper M, Gordon A, et al. Fasciola hepatica: specificity of a coproantigen ELISA test for diagnosis of fasciolosis in fecal samples from cattle and sheep concurrently infected with gastrointestinal nematodes, coccidians and/or rumen flukes (paramphistomes), under field conditions. Vet Parasitol. 2015;212:181–7.

    Article 

    Google Scholar
     

  • Charlier J, Duchateau L, Claerebout E, Williams D, Vercruysse J. Associations between anti-Fasciola hepatica antibody levels in bulk-tank milk samples and production parameters in dairy herds. Prev Vet Med. 2007;78:57–66.

    Article 

    Google Scholar
     

  • Charlier J, De Cat A, Forbes A, Vercruysse J. Measurement of antibodies to gastrointestinal nematodes and liver fluke in meat juice of beef cattle and associations with carcass parameters. Vet Parasitol. 2009;166:235–40.

    Article 
    CAS 

    Google Scholar
     

  • Sustainable Control of Parasites in Sheep (SCOPS). Liver fluke. A guide to test-based control. 2022. https://www.scops.org.uk/workspace/pdfs/fluke-diagnostics-treatment-poster_1.pdf. Accessed 29 Dec 2022.

  • McLeonard C, van Dijk J. Controlling lungworm disease (husk) in dairy cattle. InPractice. 2017;39:408–19.


    Google Scholar
     

  • Eysker M. The sensitivity of the Baermann method for the diagnosis of primary Dictyocaulus viviparus infections in calves. Vet Parasitol. 1997;69:89–93.

    Article 
    CAS 

    Google Scholar
     

  • Ploeger HW, Verbeek PC, Dekkers CW, Strube C, Van Engelen E, Uiterwijk M, et al. The value of a bulk-tank milk ELISA and individual serological and fecal examination for diagnosing (sub)clinical Dictyocaulus viviparus infection in dairy cows. Vet Parasitol. 2012;184:168–79.

    Article 
    CAS 

    Google Scholar
     

  • Rode B, Jørgensen RJ. Baermannization of Dictyocaulus spp from faeces of cattle, sheep and donkeys. Vet Parasitol. 1989;30:205–11.

    Article 
    CAS 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *